467 research outputs found

    Time, distance, and feature trade-offs in visual apparent motion.

    Full text link

    Time, distance, and feature trade-offs in visual apparent motion.

    Get PDF

    Continuous measurement of visible persistence.

    Get PDF

    Measuring and modeling the trajectory of visual spatial attention.

    Get PDF
    In a novel choice attention-gating paradigm, observers monitor a stream of 3 3 letter arrays until a tonal cue directs them to report 1 row. Analyses of the particular arrays from which reported letters are chosen and of the joint probabilities of reporting pairs of letters are used to derive a theory of attention dynamics. An attention window opens 0.15 s following a cue to attend to a location, remains open (minimally) 0.2 s, and admits information simultaneously from all the newly attended locations. The window dynamics are independent of the distance moved. The theory accounts for about 90 % of the variance from the over 400 data points obtained from each of the observers in the 3 experiments reported here. With minor elaborations, it applies to all the principal paradigms used to study the dynamics of visual spatial attention. We explored a method of measuring the trajectory of spatial attention that is analogous to measuring the trajectory of subatomic particles in a Glaser bubble chamber (Gray & Isaacs, 1975). In the bubble chamber, a three-dimensional space is filled with a super-heated liquid. A particle traveling through the liquid causes rapid localized boiling—microscopic bubbles—along its path. The bub

    Measuring the spatial frequency selectivity of second-order texture mechanisms

    Get PDF
    AbstractRecent investigations of texture and motion perception suggest two early filtering stages: an initial stage of selective linear filtering followed by rectification and a second stage of linear filtering. Here we demonstrate that there are differently scaled second-stage filters, and we measure their contrast modulation sensitivity as a function of spatial frequency. Our stimuli are Gabor modulations of a suprathreshold, bandlimited, isotropic carrier noise. The subjects' task is to discriminate between two possible orientations of the Gabor. Carrier noises are filtered into four octave-wide bands, centered at m = 2, 4, 8, and 16 c/deg. The Gabor test signals are w = 0.5, 1, 2, 4 and 8 c/deg. The threshold modulation of the test signal is measured for all 20 combinations of m and w. For each carrier frequency m, the Gabor test frequency w to which subjects are maximally sensitive appears to be approximately 3–4 octaves below m. The consistent m × w interaction suggests that each second-stage spatial filter may be differentially tuned to a particular first-stage spatial frequency. The most sensitive combination is a second-stage filter of 1 c/deg with first-stage inputs of 8–16 c/deg. We conclude that second-order texture perception appears to utilize multiple channels tuned to spatial frequency and orientation, with channels tuned to low modulation frequencies appearing to be best served by carrier frequencies 8 to 16 times higher than the modulations they are tuned to detect

    Two mechanisms that determine the Barber-Pole Illusion

    Get PDF
    AbstractIn the Barber-Pole Illusion (BPI), a diagonally moving grating is perceived as moving vertically because of the narrow, vertical, rectangular shape of the aperture window through which it is viewed. This strong shape–motion interaction persists through a wide range of parametric variations in the shape of the window, the spatial and temporal frequencies of the moving grating, the contrast of the moving grating, complex variations in the composition of the grating and window shape, and the duration of viewing. It is widely believed that end-stop-feature (third-order) motion computations determine the BPI, and that Fourier motion-energy (first-order) computations determine failures of the BPI. Here we show that the BPI is more complex: (1) In a wide variety of conditions, weak-feature stimuli (extremely fast, low contrast gratings, 21.5Hz, 4% contrast) that stimulate only the Fourier (first-order) motion system actually produce a slightly better BPI illusion than classical strong-feature gratings (2.75Hz, 32% contrast). (2) Reverse-phi barber-pole stimuli are seen exclusively in the feature (third-order) BPI direction when presented at 2.75Hz and exclusively in the opposite (Fourier, first-order) BPI direction at 21.5Hz, indicating that both the first- and the third-order systems can produce the BPI. (3) The BPI in barber poles with scalloped aperture boundaries is much weaker than in normal straight-edge barber poles for 2.75Hz stimuli but not in 21.5Hz stimuli. Conclusions: Both first-order and third-order stimuli produce strong BPIs. In some stimuli, local Fourier motion-energy (first-order) produces the BPI via a subsequent motion-path-integration computation (Journal of Vision (2014) 14, 1--27); in other stimuli, the BPI is determined by various feature (third-order) motion inputs; in most stimuli, the BPI involves combinations of both. High temporal frequency, low-contrast stimuli favor the first-order motion-path-integration computation; low temporal frequency, high-contrast stimuli favor third-order motion computations

    How to study the kinetic depth effect experimentally.

    Get PDF
    • …
    corecore